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Supplemental Methods 

 

Enrollment, Sampling, and Case Definitions: 

Demographic information, baseline biospecimens and a nasopharyngeal swab were collected at initial enrollment. 

Confirmed Index Cases were sampled for PAXGene RNA tubes, serum, plasma, and nasal swabs at the time of 

illness identification for phenotyping, gene expression analyses and other future work.  Viral etiology was assessed 

from nasal swabs using a commercial multiplex PCR assay (QIAGEN ResPlex II v2.0, Luminex RVP, or Biofire 

FilmArray RP).  Healthy CCs living in proximity to an IC provided blood (PAXGene, serum, plasma) and 

respiratory samples daily for up to five consecutive days and were monitored for symptomatic conversion and viral 

shedding. ICs identified on average 5.8 CCs (range 1-11) to be serially monitored. Quantitative measurement of 

eight symptoms were recorded daily via electronic survey (cough, fever, headache, malaise, nasal congestion, nasal 

discharge, sneezing, and sore throat, each with severity 0-4 where 0=not present, 1=Mild, 2=Moderate, 3=Severe, 

4=Very Severe).  For analysis, an IC was identified as a subject with a cumulative symptom score of ≥6 on a single 

day. A CC was considered to be a symptomatic conversion if cumulative symptom score reaches ≥6 on a single day 

in the 5-day window. Symptom score cutoffs were derived from prior viral challenge studies, where a cutoff of a 

symptom sum of 6 for a single day was determined to provide the optimal differentiation between infected and 

uninfected subjects9,17,32.  If a Close Contact had overlapping contact with two Index Cases who became 

symptomatic within 1 day of each other, then that Close Contact would be considered a CC for both Index Cases.  

Each subject being monitored in the study could become an IC at any time except during the observation window 

when they were a CC.  10 days after being named a CC for IC1, the same CC could then be monitored/sampled 

again as a CC for an unrelated IC2 if otherwise indicated by the protocol.  Healthy controls (asymptomatic non-

shedders) are defined as those with a modified Jackson score of 0 and a negative etiology test. For each longitudinal 

profile we denote time ‘T’ as the day corresponding to the maximum cumulative daily modified Jackson score for 

that individual subject.   

 

Microbiologic evaluation 

Due to variable production/availability of tests across study years, 3 different respiratory viral assays were used over 

the course of the study. Nasopharyngeal swabs were first tested via the ResPlex II v .0 viral \multiplex assay 
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(Qiagen)  which detects influenza A and B, adenovirus B and E, parainfluenza virus 1 to 4, respiratory syncytial 

virus (RSV) A and B, human metapneumovirus (hMPV), human rhinovirus (HRV), coronavirus (229E, OC43, 

NL63, and HKU1), coxsackie/echo virus, and bocavirus, the Luminex xTag Fast, Respiratory Viral Panel, which 

includes influenza A, influenza A/H1, influenza A/H3, RSV A and B, coronavirus (229E, HKU1, NL63, and OC43), 

parainfluenza virus 1-4, hMPV, adenovirus, and bocavirus, or by the BioFire Respiratory Panel which includes 

testing for adenovirus, coronavirus (229E, OC43, NL63, and HKU1), hMPV, HRVs/Enterovirus, influenza A, 

influenza A/H1, influenza A/H3, influenza A/H1-2009, influenza B, parainfluenza virus 1-4, RSV, Bordetella 

pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. Kits were prepared and run per 

manufacturer’s protocols as previously described8. In order to standardize results across platforms, all Rhinovirus or 

Enterovirus positive results were combined into a single category, “Rhinovirus/Enterovirus”.  

 

Real-time PCR  

Peripheral blood was collected in PAXgene™ Blood RNA tubes (PreAnalytiX), and total RNA extracted using the 

PAXgene™ Blood miRNA Kit (QIAGEN) employing the manufacturer's recommended protocol.  RNA quantity 

and quality were assessed using Nanodrop 2000 spectrophotometer (Thermo-Fisher) and Bioanalyzer 2100 with 

RNA 6000 Nano Chips (Agilent). cDNA synthesis was performed using SuperScript VILO™ Master Mix 

(Invitrogen) according to manufacturer’s instructions.  Real-time PCR was performed using custom TLDA 384-well 

microfluidic cards with TaqMan Gene Expression Master Mix, and run on a ViiA7 Real-Time PCR System 

(Applied Biosystems).  RT-PCR data was generated for all IC participants, for CCs developing symptoms (symptom 

score increased by 6) across their 5 day window, as well as matched healthy controls.  Raw quantification cycle 

(Cq)values were exported for statistical analysis. The TaqMan assays for selected transcripts were chosen based on a 

tiered list of criteria that involved primers and probe location within a target, probe exon spanning behavior, 

potential off-target amplification, and assay availability. To maximize performance of the RT-PCR platform, we 

performed iterative re-derivation of the regression coefficients for the gene transcripts in the model across training 

and test splits, including model parameter selection via Grid Search. This yields a comprehensive look at the quality 

of prediction expected.  When comparing infected individuals at the time of maximal symptoms against a random 

selection of uninfected subject time points (on each iteration) the model results in an auROC mean of 0ꞏ9(IQR 0ꞏ87-

0ꞏ93).   For the development of all the classifiers described in this work, the data were normalized to the PCR values 
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of the control genes such that data from a given individual or a single individual could be classified.  Gene 

components of the TLDA signature (and controls genes) are listed in Table S2. 

 

Supplemental Description of Statistical Analyses 

Definitions and data preparation 

RT-PCR data were obtained for a total of 36 host gene expression targets in 811 samples. Reference transcripts were 

used to internally normalize expression values from the signature. Specifically, the reference genes (FPGS, TRAP1, 

or DECR1) were selected due to their low coefficients of variation across all samples. The quantification cycle, or 

Cq, values were transformed into normalized relative quantities using the reference assays as previously described9. 

Cases were symptomatic shedders as defined by a modified Jackson score of 6 or greater along with a positive viral 

etiology test. The healthy controls were asymptomatic non-shedders, defined by a modified Jackson score of 0 and a 

negative etiology test.  For the purposes of analyzing accuracy of the RT-PCR assay across all viral infections, all 

individuals with multiple positive PCR results were considered similarly to individuals with only one virus detected, 

as they likely represented a true viral infection regardless of whether the source was mono or polymicrobial.  

However, for the purpose of determining virus-specific performance metrics (for instance in Figure 3), only subjects 

with a single virus detected during the episode were considered." 

Training and Test Data Overview 

We fit a statistical model to predict the probability that a subject is (or will become) a symptomatic shedder. To do 

so, we randomly assigned subjects in a 1:1 ratio to either the training dataset or test dataset. We then trained on all 

available timepoints within the training dataset by randomly selecting a single timepoint per subject (‘T-3’, ‘T-2’, 

‘T-1’, ‘T’, ‘T1’, or ‘IC’). This process is repeated for each iteration utilized during model development, as described 

below. This approach leads to a greater variation in the training data, as we have data from subjects before and after 

peak symptoms have appeared: thus the model sees the entire course of illness. For the test dataset, we considered 

all of time points individually.  
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Statistical Model 

We train and update an L2-penalized logistic regression model in Tensorflow34. Given a subject’s (normalized) gene 

values as an input, the model’s output is a probability that this subject is a symptomatic shedder. As there are 36 

genes, we have 36 coefficients, plus a bias/intercept that are learned during training. Additionally, we trained models 

to obtain different sets of regularization parameters. Overall, 25 instances of the model were trained where each 

instance has a different randomly generated train/test split. This is done to average out any splitting effects. Then, 

for a single model instance, we use 50 training iterations. In each iteration, we update the timepoints used for 

training: i.e., for each subject in the training set for each iteration, we select a timepoint at random. The model 

therefore sees a more complete representation of the subjects’ time course both within and across iterations. In each 

iteration, we use the previous iteration’s model parameters (logistic regression coefficients) as a starting point, and 

then train and update the parameters using the new training data. After all training was completed, we stored the 

result from the last iteration of each model instance. For testing, all of the subjects’ timepoints were used 

independently. To select the regularization parameter for each of the 25 model instances, we trained with several 

different values and selected the value of the parameter that led to the lowest coefficient of variation from the area 

under the receiver operating characteristic (auROC) statistics across all test timepoints.  

The model’s classification accuracy was assessed by computing the auROC on the independent test participants 

across viruses and at each relevant timepoint.   We then calculated the true positive rate (TPR) and false positive rate 

(FPR), which required thresholding of output (predicted) probabilities. This was selected by fixing a desired FPR 

(e.g., 0.2) and calculating the associated TPR at all timepoints [Figure s5]. We used a similar approach to define 

performance characteristics for identifying cases vs. controls using individual genes in the signature as well as 

symptom scores.  
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Table s1. Demographics 
 

Subject Demographics    
  
Gender:  
   Male 708 (48%) 

   Female 757 (52%)  

Age (range):    

  18.2 (18-25) 

Race, n (%)   

   Native American  17   (1%) 

   Asian 385 (26%)  

   African American 133  (9%)  

   White 841 (57%)  

   Other  89   (6%)  
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Table s2. Student Cohort enrollment 
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Table s3. Viral Co-infections 

Viruses n 

Coxsackie/Echo and HRV/Entero 16 

Parainfluenza and RSV 1 

Coronavirus and RSV 1 

Coronavirus and HRV 1 

Coronavirus and Coxsackie/Echo 1 

Adeno and hMPV 1 

Coxsackie/Echo and Parainfluenza 1 
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Table s4. Genes included in the signature 
 

Gene ID Gene Annotation 

CCL2 C-C motif chemokine ligand 2(CCL2) 

RTP4 receptor transporter protein 4(RTP4) 

OAS3 2'-5'-oligoadenylate synthetase 3(OAS3) 

RSAD2 radical S-adenosyl methionine domain containing 2(RSAD2) 

IFI44L interferon induced protein 44 like(IFI44L) 

OAS1 2'-5'-oligoadenylate synthetase 1(OAS1) 

OAS2 2'-5'-oligoadenylate synthetase 2(OAS2) 

LY6E lymphocyte antigen 6 complex, locus E(LY6E) 

ISG15 ISG15 ubiquitin-like modifier(ISG15) 

XAF1 XIAP associated factor 1(XAF1) 

MX1 MX dynamin like GTPase 1(MX1) 

HERC5 HECT and RLD domain containing E3 ubiquitin protein ligase 5(HERC5) 

SERPING1 serpin family G member 1(SERPING1) 

IFI44 interferon induced protein 44(IFI44) 

IFIT3 interferon induced protein with tetratricopeptide repeats 3(IFIT3) 

TNFAIP6 TNF alpha induced protein 6(TNFAIP6) 

IFIT2 interferon induced protein with tetratricopeptide repeats 2(IFIT2) 

IFI27 interferon alpha inducible protein 27(IFI27) 

OASL 2'-5'-oligoadenylate synthetase like(OASL) 

IFIT1 interferon induced protein with tetratricopeptide repeats 1(IFIT1) 

ATF3 activating transcription factor 3(ATF3) 

LAMP3 lysosomal associated membrane protein 3(LAMP3) 

IFIT5 interferon induced protein with tetratricopeptide repeats 5(IFIT5) 

FPGS folylpolyglutamate synthase(FPGS) 

IFI6 interferon alpha inducible protein 6(IFI6) 

SEPT4 Septin 4 (SEPT4) 

SIGLEC1 sialic acid binding Ig like lectin 1 (SIGLEC1) 

TRAP1 TNF receptor associated protein 1(TRAP1) 

GBP1 guanylate binding protein 1(GBP1) 

DDX58 DExD/H-box helicase 58(DDX58) 

DECR1 2,4-dienoyl-CoA reductase 1, mitochondrial(DECR1) 

FARP1 FERM, ARH/RhoGEF and pleckstrin domain protein 1(FARP1) 

GAPDH glyceraldehyde-3-phosphate dehydrogenase(GAPDH) 

PPIA peptidylprolyl isomerase A(PPIA) 

PPIB peptidylprolyl isomerase B(PPIB) 

RPL30 ribosomal protein L30(RPL30) 
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Figure s1.  Students were enrolled at the beginning of the school year. Index Cases (ICs) were identified when daily 
symptom surveys indicated potential respiratory illness. This flagged serial sampling of their Close Contacts (CCs), 
some of whom would also develop RTI during the 5-day observation window (red stars).  This unique model 
permits blood sampling of some Close Contacts during early and presymptomatic phases of illness. 
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Figure s2.  Diagnostic performance of individual genes at each timepoint. We evaluate the diagnostic performance 
of individual genes by calculating auROC at each test time point from looking at individual gene expression values 
from the subjects in each model instance against the outcome (Symptomatic Shedders vs Asymptomatic Non-
Shedders). That is, we directly use the gene values instead of a predicted probability; this procedure is equivalent to 
generating an ROC curve by thresholding gene values and calculating the AUC of this curve.  The performance of 
the top 10 individual genes at discriminating symptomatic viral infection (selected by calculating mean AUC across 
all model instances at all test time points) are shown above. 
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Figure s3. Performance of individual genes across time. Classification performance of each individual gene 
compared to the full 36-gene model (right-most model in each panel). Each panel represents the performance of 
each individual gene in the model (listed on the x-axis) at each indicated timepoint.  
  

Time T Time T-1 

Time T-2 Time T-3 
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Figure s4.  Disease severity vs Signature strength. Symptom severity varies by timepoint, gradually increasing over 
time, but no correlation is seen between strength of the transcriptomic signature (relative probability of being a 
symptomatic shedder, p(SxS)) and symptom severity at any timepoint.  
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Figure s5.  Signature performance vs symptomatic diagnosis. The transcriptomic model outperforms symptoms 
alone at all times except time T (where by definition all subjects met symptom criteria). Here we demonstrate the 
TPR at the different test timepoints for the model and the best performing gene IFIT3 (“gene TPR”, see Figure S2) 
when the FPR is fixed at 0.2, and that of the symptom score when it is thresholded at 6. As expected, later 
timepoints and timepoint ‘IC’ have higher TPRs. Note that by definition, since we define symptomatic patients as 
those with a symptom score larger than 6, the FPR for the symptom scores will be zero and the TPR for symptoms at 
time ‘T’ and ‘IC’ will be 1. 
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Figure s6.  Effect of training timepoint on signature performance. Median signature performance variation by 
training time point. Training the model specifically on early times offers no significant improvement in signature 
performance. For the primary analysis (Figure 3) subjects in each model instance can be assigned to any time point 
in training. Here, we present results when training on a specific single timepoint instead. Depicted is the median 
auROC across all model instances for each test time point. The auROC increases over time and is also high at time 
‘IC’ no matter which training timepoint is used. However, we also see that training on early timepoints does not 
offer any significant performance benefit. 
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Figure s7.  Signature accuracy by timepoint, across all viruses. For each of the 25 model instances, we have as 
outputs a set of predicted probabilities for the subjects at each test timepoint; we use these predicted probabilities to 
generate ROC curves for each test timepoint. For each ROC curve, we compute and report the accuracy 
corresponding to the sensitivity and specificity at which the Youden-J statistic is maximized. 

 


